Neurite orientation dispersion and density imaging of mouse brain microstructure
Nian Wang, Jieying Zhang, Gary Cofer, Yi Qi, Robert J. Anderson, Leonard E. White, G. Allan Johnson
Brain Structure and Function 20 April 2019, 224, pages 1797–1813(2019) Brain Structure and Function 224
Advanced biophysical models like neurite orientation dispersion and density imaging (NODDI) have been developed to estimate the microstructural complexity of voxels enriched in dendrites and axons for both in vivo and ex vivo studies. NODDI metrics derived from high spatial and angular resolution diffusion MRI using the fixed mouse brain as a reference template have not yet been reported due in part to the extremely long scan time required. In this study, we modified the three-dimensional diffusion-weighted spin-echo pulse sequence for multi-shell and undersampling acquisition to reduce the scan time. This allowed us to acquire several exhaustive datasets that would otherwise not be attainable. NODDI metrics were derived from a complex 8-shell diffusion (1000–8000 s/mm2) dataset with 384 diffusion gradient-encoding directions at 50 µm isotropic resolution. These provided a foundation for exploration of tradeoffs among acquisition parameters. A three-shell acquisition strategy covering low, medium, and high b values with at least angular resolution of 64 is essential for ex vivo NODDI experiments. The good agreement between neurite density index (NDI) and the orientation dispersion index (ODI) with the subsequent histochemical analysis of myelin and neuronal density highlights that NODDI could provide new insight into the microstructure of the brain. Furthermore, we found that NDI is sensitive to microstructural variations in the corpus callosum using a well-established demyelination cuprizone model. The study lays the groundwork for developing protocols for routine use of high-resolution NODDI method in characterizing brain microstructure in mouse models.
Click on link above for complete article.
CIVM makes many types of data acquired for published and yet unpublished studies available through our CIVM VoxPort application. Use of VoxPort is free. Registration is required. Register for VoxPort access now. A new browser window or tab will open.
We ask that you provide contact information, and agree to give credit to the Duke Center for In Vivo Microscopy for any written or oral presentation using data from this site. Please use the following acknowledgement: Imaging data provided by the Duke Center for In Vivo Microscopy NIH/NIBIB (P41 EB015897).
Instructions: Click on a link below. A new browser window or tab will open where you will be prompted to login to CIVMVoxPort. If you do not have login credentials, follow the instructions to register for access. After you login, come back to this page and re-click on a link below to go directly to the desired page.
View Supplementary Materials in CIVMVoxPort
Acknowledgements:This work was supported by the NIH P41 EB015897 (to GA Johnson), NIH 1S10OD010683-01 (to GA Johnson), 1R01NS096720-01A1 (to GA Johnson). The authors thank James Cook and Lucy Upchurch for significant technical support. The authors thank Prof. Jie Zhuang for insight comments and discussions. The authors thank Tatiana Johnson for editorial comments on the manuscript. The authors thank NIEHS with histology help.